Замена переменных в двойных интегралах

Кратные интегралы примеры решения задач

Геометрические приложения поверхностных интегралов

Пример Вычислить интеграл с помощью формулы Грина. Контур интегрирования C представляет собой окружность (рисунок 7).

Решение. Компоненты векторного поля и их частные производные равны Тогда по формуле Грина получаем Для вычисления двойного интеграла удобно перейти к полярным координатам. Здесь Таким образом, интеграл равен
Рис.7

Предельные показатели в микроэкономике Приведем примеры двух предельных показателей в микроэкономике.

Как видно, последовательное применение формулы интегрирования по частям позволяет постепенно упростить функцию и привести интеграл к табличному.


Формула Тейлора. Пусть функция f(x) имеет в некоторой окрестности точки х0 производные  Тогда для любой точки х из этой окрестности имеет место равенство  при х®х0.

Эта формула называется формулой Тейлора с остаточным членом в форме Пеано. Последнее слагаемое (т.е. остаточный член) в формуле Тейлора иногда записывают в виде:

  .

Соответствующая формула тогда называется формулой Тейлора с остаточным членом в форме Лагранжа.

В случае х0=0 формула Тейлора принимает вид:

, при х®0 и называется формулой Маклорена.

Полезно помнить разложения по формуле Маклорена некоторых важнейших элементарных функций: