Живопись перед первой мировой войной http://hisd.ru/ Построение касательных к двум окружностям
Замена переменных в тройных интегралах

Кратные интегралы примеры решения задач

Замена переменной в определенном интеграле

Определенный интеграл по переменной x можно преобразовать в определенный интеграл относительно переменной t с помощью подстановки x = g (t): Новые пределы интегрирования по переменной t определяются выражениями где g -1 - обратная функция к g, т.е. t = g -1(x). Интегрирование по частям для определенного интеграла В этом случае формула интегрирования по частям имеет вид: где означает разность значений произведения функций uv при x = b и x = a.

Пример

Вычислить интеграл .

Решение. Применяя формулу Ньютона-Лейбница, получаем

Исследовать функцию  и построить ее график.

 

1. Областью определения функции являются все значения х, кроме х = 0.

2. Функция является функцией общего вида в смысле четности и нечетности.

3. Точки пересечения с координатными осями: c осью Ох: y = 0; x =

  с осью Оу: x = 0; y – не существует.

4. Точка х = 0 является точкой разрыва , следовательно, прямая х = 0 является вертикальной асимптотой.

Наклонные асимптоты ищем в виде: y = kx + b.

Наклонная асимптота у = х.

5. Находим точки экстремума функции.

y¢ = 0 при х = 2, у¢ = ¥ при х = 0.

y¢ > 0 при х Î (-¥, 0) – функция возрастает, 

y¢ < 0 при х Î (0, 2) – функция убывает,

у¢ > 0 при х Î (2, ¥) – функция возрастает.

Таким образом, точка (2, 3) является точкой минимума.

Для определения характера выпуклости/вогнутости функции находим вторую производную.

 > 0 при любом х ¹ 0, следовательно, функция вогнутая на всей области определения.

Вычислить интеграл .

Вычислить интеграл .

Найти площадь фигуры, ограниченную графиками функций и .

Вычислить площадь эллипса .

Неопределенный интеграл Понятие неопределенного интеграла

Функция F(x) называется первообразной для функции f(x) на промежутке Х, если в каждой точке х этого промежутка справедливо равенство F¢(x) = f(x).

Совокупность всех первообразных для функции f(x) на промежутке Х называется неопределенным интегралом от функции f(x) и обозначается

где С - произвольная постоянная.

В записи  f(x) называется подынтегральной функцией, а f(x)dx-подынтегральным выражением.

Нахождение неопределенного интеграла от некоторой функции называется интегрированием этой функции. Операции интегрирования и дифференцирования взаимно обратны.

Основные свойства неопределенного интеграла

 

 

 

  

где a-некоторое число;

 


Геометрические приложения двойных интегралов