Винтовая лента Инженерная графика http://fistoe.ru/ Реакторы на быстрых нейтронах http://ingraf.ru/
Замена переменных в тройных интегралах

Кратные интегралы примеры решения задач

Определенный интеграл. Формула Ньютона-Лейбница.

Пусть функция f (x) непрерывна на замкнутом интервале [a, b]. Определенный интеграл от функции f (x) в пределах от a до b вводится как предел суммы бесконечно большого числа слагаемых, каждое из которых стремится к нулю:

где Свойства определенного интеграла Ниже предполагается, что f (x) и g (x) - непрерывные функции на замкнутом интервале [a, b].
  1. где k - константа;
  2. Если для всех , то .
  3. Если в интервале [a, b], то

Формула Ньютона-Лейбница Пусть функция f (x) непрерывна на замкнутом интервале [a, b]. Если F (x) - первообразная функции f (x) на [a, b], то

Вспомним теперь теорему Стокса: , где - непрерывно дифференцируемые функции, - кусочно гладкая поверхность, - ее край, причем направление обхода относительно выбраной стороны является положительным.

Получим определение без использования системы координат. Пусть - точка, - плоскость, в которой лежит окружность радиуса с центром в . Тогда по теореме о среднем ввиду непрерывности подынтегральной функции. Здесь точка близка к . По теореме Стокса, или .

Ввиду произвольности выбора плоскости, получаем проекцию на произвольную ось . Это определяет и сам вектор.

Геометрические приложения двойных интегралов

Геометрический смысл производной

Пусть функция y=f(x) имеет производную в точке х0. Тогда существует касательная к графику этой функции в точке М0(х0;у0), уравнение которой имеет вид

 у-у0=f¢(x0)(x-x0).

 

При этом f¢(x0)=tga, где a-угол наклона этой касательной к оси Ох.

Прямая, проходящая через точку касания, перпендикулярно касательной, называется нормалью к кривой и имеет уравнение

 

Производная неявной функции

Пусть функция y=y(x), обладающая производной в точке х, задана неявно уравнением

 F(x,y)=0.

Тогда производную y¢(x) этой функции можно найти, продифференцировав это уравнение (при этом у считается функцией от х), и разрешая затем полученное уравнение относительно у¢.