Замена переменных в тройных интегралах

Кратные интегралы примеры решения задач

Замена переменных в тройных интегралах

Пример Найти объем области U, заданной неравенствами

Решение. Очевидно, что данная область является наклонным параллелепипедом. Удобно сделать такую замену переменных, при которой наклонный параллелепипед преобразуется в прямоугольный. В этом случае тройной интеграл сразу распадается на произведение трех однократных интегралов. Сделаем следующую замену: Область интегрирования U' в новых переменных u, v, w ограничена неравенствами Объем тела равен Вычислим якобиан данного преобразования. Чтобы не выражать старые переменные x, y, z через новые u, v, w, найдем сначала якобиан обратного преобразования: Тогда Следовательно, объем тела равен

  Методами дифференциального исчисления исследовать функцию  и построить ее график.

1. Областью определения данной функции являются все действительные числа (-¥; ¥).

2. Функция является функцией общего вида в смысле четности и нечетности.

3. Точки пересечения с координатными осями: c осью Оу: x = 0; y = 1;

  с осью Ох: y = 0; x = 1;

4. Точки разрыва и асимптоты: Вертикальных асимптот нет.

Наклонные асимптоты: общее уравнение y = kx + b;

Итого: у = -х – наклонная асимптота.

Геометрические приложения двойных интегралов

Геометрический смысл производной

Пусть функция y=f(x) имеет производную в точке х0. Тогда существует касательная к графику этой функции в точке М0(х0;у0), уравнение которой имеет вид

 у-у0=f¢(x0)(x-x0).

 

При этом f¢(x0)=tga, где a-угол наклона этой касательной к оси Ох.

Прямая, проходящая через точку касания, перпендикулярно касательной, называется нормалью к кривой и имеет уравнение

 

Производная неявной функции

Пусть функция y=y(x), обладающая производной в точке х, задана неявно уравнением

 F(x,y)=0.

Тогда производную y¢(x) этой функции можно найти, продифференцировав это уравнение (при этом у считается функцией от х), и разрешая затем полученное уравнение относительно у¢.