Затухающие колебания Физика лабораторные работы Комнатное цветоводство http://ftoe.ru/
Замена переменных в тройных интегралах

Кратные интегралы примеры решения задач

Замена переменных в тройных интегралах

При вычислении тройного интеграла, как и двойного, часто удобно сделать замену переменных. Это позволяет упростить вид области интегрирования или подынтегральное выражение. Пусть исходный тройной интеграл задан в декартовых координатах x, y, z в области U:

Требуется вычислить данный интеграл в новых координатах u, v, w. Взаимосвязь старых и новых координат описывается соотношениями: Предполагается, что выполнены следующие условия:
  1. Функции φ, ψ, χ непрерывны вместе со своими частными производными;
  2. Существует взаимно-однозначное соответствие между точками области интегрирования U в пространстве xyz и точками области U' в пространстве uvw;
  3. Якобиан преобразования I (u,v,w), равный отличен от нуля и сохраняет постоянный знак всюду в области интегрирования U.
Тогда формула замены переменных в тройном интеграле записывается в виде: В приведенном выражении означает абсолютное значение якобиана. Для вычисления тройных интегралов часто используются цилиндрические и сферические координаты.

Ниже приводятся примеры вычисления интегралов с использованием других преобразований координат. Где дешевле горелки ? Посетите Альпспорт в Киеве, лучший экипировочный центр

Соленоидальное поле. Векторная трубка в соленоидальном поле

Определение.- соленоидальное поле, если .

Векторная линия обладает тем свойством, что в любой ее точке вектор касательной к линии совпадает с .

Векторная трубка – это совокупность векторных линий.

Пусть - сечения векторной трубки и - ее боковая поверхность. . Рассмотрим внешнюю нормаль к и применим теорему Остроградского: , в случае соленоидального поля. Итак, . На по определению векторной линии , поэтому или . Изменяя направление нормали на на противоположное получаем, что поток соленоидального поля через поперечные сечения векторных трубок постоянен.

При вычислении тройного интеграла, как и двойного, часто удобно сделать замену переменных. Это позволяет упростить вид области интегрирования или подынтегральное выражение. Пусть исходный тройной интеграл задан в декартовых координатах x, y, z в области U:

Найти объем области U, заданной неравенствами

Найти объем наклонного параллелепипеда, заданного неравенствами

Геометрический смысл производной

Пусть функция y=f(x) имеет производную в точке х0. Тогда существует касательная к графику этой функции в точке М0(х0;у0), уравнение которой имеет вид

 у-у0=f¢(x0)(x-x0).

 

При этом f¢(x0)=tga, где a-угол наклона этой касательной к оси Ох.

Прямая, проходящая через точку касания, перпендикулярно касательной, называется нормалью к кривой и имеет уравнение

 

Производная неявной функции

Пусть функция y=y(x), обладающая производной в точке х, задана неявно уравнением

 F(x,y)=0.

Тогда производную y¢(x) этой функции можно найти, продифференцировав это уравнение (при этом у считается функцией от х), и разрешая затем полученное уравнение относительно у¢.


Геометрические приложения двойных интегралов