Расчет балок на жесткость Лабораторные работы по проверке теоретических положений сопротивления материалов

Задачи по сопративлению материалов

ИЗГИБ ПРЯМОГО БРУСА Чистый и поперечный изгиб. В каком случае изгиб называется прямым. Вычисление поперечной силы и изгибающего момента в заданном сечении балки. Правило знаков для них. Порядок операций, производимых при построении эпюр , и . Можно ли построить эпюры от неуравновешенной нагрузки. Три зависимости между интенсивностью распределенной нагрузки, поперечной силой и изгибающим моментом. Из каких условий они получены. Особенности деформации балки при чистом изгибе. Изменение при чистом изгибе поперечное сечение балки.

Плоский изгиб

 Изгиб представляет собой такую деформацию, при которой происходит искривление оси прямого бруса или изменение кривизны кривого бруса. Изгиб называют чистым, если изгибающий момент является единственным внутренним усилием, возникающим в поперечном сечении бруса (балки). Изгиб называют поперечным, если в поперечных сечениях бруса наряду с изгибающими моментами возникают также и поперечные силы. Если плоскость действия изгибающего момента проходит через одну из главных центральных осей поперечного сечения, то изгиб носит название плоского или прямого.

Построение эпюр изгибающих моментов и поперечных сил


Поперечная сила в сечении балки а – а считается положительной, если равнодействующая внешних сил слева от рассматриваемого сечения направлена снизу вверх, а справа – сверху вниз (рис. 4.1.1, а), и отрицательной – в противоположном случае (рис. 4.1.1, б). Иногда пользуются следующим правилом: положительная поперечная сила стремится повернуть балку вокруг рассматриваемого сечения по часовой стрелке, а отрицательная – против часовой стрелки.

 Ординаты эпюр поперечных сил, соответствующие положительным значениям, будем откладывать вверх от осей эпюр, а отрицательным – вниз (ось эпюры должна быть направлена параллельно оси балки).

 Изгибающий момент в сечении балки а-а считается положительным, если равнодействующий момент внешних сил слева от сечения направлен по часовой стрелке, а справа – против часовой стрелки (рис. 4.1.2, а), и отрицательным – в противоположном случае (рис. 4.1.2, б). 

 Ординаты эпюр изгибающих моментов, соответствующие положительным значениям, будем откладывать вниз от осей этих эпюр, а отрицательным – вверх (ось эпюры должна быть направлена параллельно оси балки).

 Таким образом, устанавливаясь откладывать положительные ординаты эпюры изгибающих моментов вниз от оси балки, мы получим, что эпюра оказывается построенной со стороны растянутых волокон балки.

 Теорема Журавского (теорема Шведлера). Производная от изгибающего момента M по длине балки равна поперечной силе Q:

  (4.1.1)

 Производная от поперечной силы Q по длине балки равна распределенной нагрузке q:

  (4.1.2)

У к а з а н и я

 1. Если в рассматриваемом сечении приложена сосредоточенная сила F, перпендикулярная к оси балки, то значение поперечной силы Q в этом сечении изменяется скачкообразно на величину приложенной силы F.

 2. Если в рассматриваемом сечении к балке приложен сосредоточенный внешний момент m, то значение изгибающего момента M в этом сечении изменяется скачкообразно на величину приложенного момента m.

 3. Тангенс угла между касательной к линии, ограничивающей эпюру изгибающего момента М и осью эпюры, равен поперечной силе Q.

 4. Чем больше по абсолютной величине значение поперечной силы Q тем круче линия, ограничивающая эпюру М.

 5. На участке балки, на котором поперечная сила имеет постоянное значение, эпюра изгибающих моментов М будет ограничена прямой наклонной линией.

 6. Изгибающий момент достигает максимума или минимума в тех сечениях балки, в которых поперечная сила равна нулю; касательная к линии, ограничивающей эпюру М, в этом сечении параллельна оси эпюры.

 7. На участках балки, на которых распределенная нагрузка q отсутствует, поперечные силы Q постоянны, а изгибающие моменты M меняются по линейному закону.

  Задача. Определить необходимую ширину b балки прямоугольного поперечного сечения , причем h = 3b. Длина балки l = 4 м, F = 6 кН. Материал балки – сталь с Ry = 240 МПа, = 1.

Эпюры главных напряжений при изгибе В каждой точке напряженного тела существуют три взаимно перпендикулярные площадки, на которых касательные напряжения равны нулю. Такие площадки называются главными площадками, а нормальные напряжения на них – главными напряжениями. В порядке возрастания эти напряжения обозначаются через , , ().

 Задача. Построить эпюры изгибающих моментов и поперечных сил для балки Решение. Определим вертикальные опорные реакции RA и RB балки. Отметим, что левая опора – шарнирно неподвижная опора, поэтому в ней возникает вертикальная опорная реакция RA, препятствующая вертикальному смещению, и горизонтальная опорная реакция Н, исключающая горизонтальное смещение закрепленного сечения балки

Задача. Построить эпюры главных напряжений , и эпюру максимальных касательных напряжений  в наиболее опасном с точки зрения главных напряжений прямоугольном поперечном сечении балки, изображенной на рис. 4.2.3. При расчете принять l = 4 м, F = 40 кН, b = 5 см, h = 15 см. Материал балки – сталь с Ry = 240 МПа.

Задача. Определить максимальный прогиб однопролетной балки

  Задача. Определить прогиб балки, изображенной на рис. 4.4.3. Жесткость балки на изгиб – EI.

Гипотезы при определении нормальных напряжений чистого изгиба. Где проходит нейтральная линия при чистом изгибе. Формула для нормальных напряжений изгиба. Эпюра нормальных напряжений. Условие прочности при изгибе. Момент сопротивления изгибу. В каких случаях сечение имеет два различных момента сопротивления. Для каких материалов приходится составлять два условия прочности в расчетном сечении. Примеры сечений выгодных и невыгодных с точки зрения изгиба. Каким способом можно уменьшить массу балки, сохранив ее прочность.
Действие динамических нагрузок