Шероховатость поверхности Правила нанесения надписей Чертежи деталей типа Эскизы деталей Особенности конструирования деталей Задание по теме "Чертежи деталей" Замена плоскостей проекций Метод плоскопараллельного перемещения

Метод плоскопараллельного перемещения

Применение метода вращения вокруг проецирующей оси при преобразовании нередко приводит к наложению на исходную новых проекций. При этом чтение чертежа представляет определенные сложности. Избавиться от указанного недостатка позволяет метод плоскопараллельного перемещения проекций фигуры.

Суть метода заключается в том, что все точки фигуры перемещаются в пространстве параллельно некоторой плоскости (например, параллельно какой-либо плоскости проекций). Это означает, что каждая точка фигуры перемещается в соответствующей плоскости уровня.

Например, прямая общего положения АВ, заданная своими проекциями A1 B1 и А2В2 (рис. 9.5), перемещается таким образом, чтобы горизонтальная проекция АВ стала параллельной оси х.

При этом точки А2 и В2 фронтальной проекции прямой АВ перемещаются в горизонтальных плоскостях уровня  и (на фронтальной проекции 2 и 2 параллельны оси х) и займут новое положение А2 и В2. При перемещении длина горизонтальной проекции A1B1 отрезка АВ остается постоянной, а величина фронтальной проекции А2 В2 будет натуральной величиной отрезка, при этом угол а - угол наклона прямой АВ к горизонтальной плоскости проекции П1.

При перемещении прямой АВ во фронтальной плоскости уровня можно достичь положения прямой, перпендикулярной к плоскости П1.

Этот метод применяется для определения натуральной величины отрезка, его угла наклона к плоскостям проекций, расстояния между параллельными прямыми и натуральной величины плоской фигуры.

Метод вращения вокруг линии уровня

Суть метода заключается в том, что осью вращения выбирается одна из линий уровня - горизонталь или фронталь плоскости или плоской фигуры. Таким образом, плоскость как бы поворачивается вокруг некоторой оси, принадлежащей этой плоскости, до положения, при которой эта плоскость становится параллельной одной из плоскостей проекций.

Например, повернем плоский угол, образованный пересекающимися прямыми а и b (рис. 9.6).

Для решения поставленной задачи проводят в плоскости угла горизонталь h и используют ее как ось вращения, вокруг которой будут вращаться прямые а и b и вершина К. Все точки вращаются в плоскостях, перпендикулярных к горизонтали, при этом точки 1 и 2 остаются неподвижными, а точка К вращается вокруг горизонтали. Из горизонтальной проекции К1 точки К проводят линию, перпендикулярную к оси вращения h1. Отрезок K1O1- горизонтальная проекция радиуса вращения точки К. Натуральную величину этого радиуса находят методом построения прямоугольного треугольника.

На продолжении прямой O1K1 откладывают гипотенузу O1K0 и получают совмещенное положение К0 Соединив точки 11 и 21 с точкой К0, получают натуральную величину угла при вершине К.

Этим способом находится натуральная величина любой плоской фигуры, плоского угла.

Метод совмещения плоскостей

Этот метод является частным случаем метода вращения вокруг линии уровня. В качестве оси вращения выбирается линия пересечения плоскости, в которой лежит та или иная фигура, с одной из плоскостей проекций. Иначе говоря, осью вращения служит горизонтальный или фронтальный след плоскости. При этом каждая точка, принадлежащая рассматриваемой фигуре, при вращении перемещается в плоскости, перпендикулярной к следу той плоскости, в которой она лежит. Например, плоскость , заданную своими следами  и , необходимо совместить с горизонтальной плоскостью проекций П1 (рис. 9.7).

Для решения поставленной задачи берут на фронтальном следе  плоскости  произвольную точку 12 и находят ее горизонтальную проекцию 1, которая лежит на оси х. Далее из точки 11 проводят луч, перпендикулярный к горизонтальному следу плоскости  (любая точка при вращении должна перемещаться в плоскости, перпендикулярной к оси поворота). На нем находят совмещенное положение точки 1 — точку 10, как точку пересечения луча с дугой окружности радиусом . Точка 10 принадлежит одновременно и плоскости П1 и новому (совмещенному) положению плоскости . Через точку 10 проводят новый фронтальный след 0 плоскости . Следы 1 и 0 характеризуют новое (совмещенное) положение плоскости .

9.6 Вопросы для самопроверки

В чем состоит сущность преобразования ортогональных проекций способом замены плоскостей проекций?

Сколько замен плоскостей проекций и в какой последовательности необходимо выполнить, чтобы перевести отрезок прямой общего положения в отрезок прямой частного положения?

Сколько замен плоскостей проекций и в какой последовательности необходимо выполнить, чтобы определить натуральную величину плоской фигуры?

В чем заключается способ вращения вокруг проецирующейоси?

В каких плоскостях перемещается точка, вращаемая вокруг оси, перпендикулярной к плоскостям П1 и П2?

Сущность способа плоскопараллельного перемещения.

Что представляет собой преобразование чертежа способом вращения вокруг линии уровня?

В чем заключается преобразование чертежа способом совмещения?

Примеры решения задач 

Ниже приведены решения одной и той же задачи вышеописанными методами.

Задание: определить натуральную величину треугольника общего положения ABC, заданного проекциями вершин A1 B1 C1 и А2В2С2 (рис. 9.8), а также угол наклона плоскости треугольника к П1.

1) Решение методом замены плоскостей проекций (рис. 9.9).

Плоскость треугольника спроецируется в натуральную величину в том случае, если она будет в пространстве параллельна одной из плоскостей проекций. Одним преобразованием задачу решить невозможно. Она решается в два этапа: при первой замене плоскостей проекций получают плоскость треугольника ABC, перпендикулярную к новой плоскости проекций, при второй замене - получают плоскость треугольника, параллельную новой плоскости проекций.

Первый этап. Одним из условий перпендикулярности двух плоскостей является наличие прямой, принадлежащей одной из плоскостей, перпендикулярной к другой плоскости. Используя этот признак, проводят через точку А в плоскости треугольника горизонталь (h). Затем на произвольном расстоянии от горизонтальной проекции треугольника A1B1C1 проводят ось x1 новой системы плоскостей проекций П1/П4 перпендикулярно к горизонтальной проекции горизонтали h1. В новой системе треугольник ABC стал перпендикулярен к новой плоскости проекций П4.

На линиях проекционной связи в новой системе откладывают координаты z точек А, В, С с фронтальной проекции исходной системы плоскостей П1/П2. При соединении новых проекций А4, B4, С4 получают прямую линию, в которую спроецировалась плоскость треугольника ABC. На этом этапе определяется угол наклона плоскости треугольника к горизонтальной плоскости проекции П1 - угол . На чертеже это угол между осью x1 и проекцией С4А4В4.

Второй этап. Выбираем новую плоскость проекции П5, параллельную плоскости треугольника, т.е. новую ось x2 проводят параллельно С4А4В4 на произвольном расстоянии. Получают новую систему П4/П5. Полученный треугольник А5В5С5 и есть искомая натуральная величина треугольника ABC.

2) Решение методом вращения вокруг проецирующей оси

(рис. 9.10).

Задача решается в два этапа. На первом этапе выполняют вращение так, чтобы плоскость треугольника ABC преобразовалась в проецирующую плоскость, т.е. стала перпендикулярна к одной из плоскостей проекций. Для этого на фронтальной проекции чертежа проводят горизонталь h2 через точку А2. Затем строят горизонтальную проекцию h1 горизонтали h через точки A1 и 11 Через точку 1 проводят ось i - ось вращения треугольника так, чтобы она была перпендикулярна к П1. На фронтальной проекции через вершины А2 и В2 проводят горизонтальные плоскости уровня 2 и 2. Вершина С принадлежит плоскости П1 поэтому ее плоскостью вращения будет плоскость проекций П1. На горизонтальной проекции, взяв за центр вращения проекцию i1 поворачивают горизонталь А так, чтобы на плоскость П2 она спроецировалась в точку. На чертеже это выразится тем, что h'1 займет новое положение - перпендикулярно к оси х. При этом на фронтальной проекции точка А2 перемещается по следу плоскости 2 до пересечения с линией связи, проведенной через точку a'1. На горизонтальной проекции поворачиваем оставшиеся вершины В и С вокруг оси так, чтобы . На фронтальной проекции вершина В перемещается по следу плоскости 2, а вершина С - по оси х. Соединив новое положение всех вершин треугольника ABC, получают проекцию А'2В'2С'2, сливающуюся в линию. Этим достигают проецирующего положения треугольника ABC. На данном этапе, при необходимости, находят угол наклона плоскости треугольника ABC к П1 - .

На втором этапе проводят ось i` через вершину С так, чтобы ось была фронтально проецирующая. При этом С'2 = /'2, а горизонтальная проекция i'1 пройдет через проекцию С'1. Вокруг оси поворачивают треугольник так, чтобы он стал параллелен горизонтальной плоскости проекций. В данной задаче вращают точки А'2 и В'1, вокруг i`2 = С'2 до совмещения с осью х, при этом горизонтальные проекции B'1 и A'1 будут перемещаться в горизонтально проецирующихся плоскостях уровня  и P1 и займут новое положение В"1, и А"1 вершина С останется на месте. Соединив новые точки между собой, получают треугольник ABC в натуральную величину.

3) Решение методом плоскопараллельного перемещения

(рис. 9.11).

Задача решается в два этапа. На первом этапе преобразовывают чертеж так, чтобы плоскость треугольника ABC стала перпендикулярна к одной из плоскостей проекций, т.е. должна в себе содержать прямую, перпендикулярную к этой плоскости. Для этого проводят в

плоскости треугольника горизонталь h (фронтальная проекция А212 // х, а горизонтальная — A111). Каждую вершину треугольника заключают в свою плоскость уровня, параллельную плоскости П1. В рассматриваемом примере вершина С принадлежит плоскости проекций П1, А принадлежит плоскости , а В — плоскости А.

Плоскость треугольника перемещается в пространстве до тех пор, пока горизонталь h1 треугольника не станет перпендикулярна к фронтальной плоскости проекций П2. Для этого на произвольном расстоянии от оси х вычерчивают горизонтальную проекцию треугольника A1B1C1 с условием, что П2, а значит  х. При этом вершины треугольника, перемещаясь каждая в своей плоскости, займут новое положение - А'2В'2С'2. Соединив эти точки, получают новое положение треугольника ABC, спроецированного в линию, т.е. перпендикулярного к плоскости П2.

На втором этапе, чтобы получить натуральную величину треугольника ABC, его плоскость поворачивают до тех пор, пока она не будет параллельна одной из плоскостей проекций. В рассматриваемом решении фронтальную проекцию треугольника А'2В'2С'2 располагают на произвольном расстоянии от оси х параллельно плоскости П1. При этом вершины А, В и С треугольника заключают в горизонтально проецирующие плоскости , Т, Р. По следам этих плоскостей будут перемещаться горизонтальные проекции вершин А'1 В'1 С'1. От нового положения фронтальной проекции А"2В"2С"2 проводят линии проекционной связи до пресечения с соответствующими следами плоскостей, в которых они перемещаются (,T1,P1), и получают точки А"1 В"1 C"1. Соединив эти точки между собой, получают треугольник ABC в натуральную величину.

4) Решение методом вращения вокруг линии уровня (рис. 9.12).

Для решения задачи этим способом необходимо повернуть плоскость треугольника вокруг линии уровня, в данном случае вокруг горизонтали, в положение, параллельное горизонтальной плоскости проекции. Через точку А в плоскости треугольника ABC проводят горизонталь h, фронтальная проекция которой будет параллельна оси х. Отмечают точку 12 и находят ее горизонтальную проекцию 11. Прямая A111 является горизонтальной проекцией h1 горизонтали h. Вокруг горизонтали будут вращаться точки В и С. Для определения радиуса вращения точки С на горизонтальной проекции проводят перпендикуляр C1O1 A111 точка О1, является центром вращения точки С.

Для определения натуральной величины радиуса вращения строят прямоугольный треугольник, в котором O1C1 - один из катетов. Второй катет - разность координат  отрезка О2С2, взятого с фронтальной проекции. В построенном треугольнике гипотенуза O1C0 - натуральная величина радиуса вращения.

На продолжении перпендикуляра O1C1 откладывают |RBp.| и получают новое положение вершины С после вращения — С0. Вторая вершина В0 получается пересечением луча C011 и перпендикуляра к горизонтальной проекции h1 проведенного через точку b1.

Треугольник A1B0C0 есть искомая натуральная величина треугольника ABC.

5) Решение методом совмещения (рис. 9.13).

Для решения задачи методом совмещения необходимо построить следы плоскости , которой принадлежит треугольник ABC. Для этого проводят в плоскости треугольника ABC фронталь  и находят горизонтальный след этой фронтали – N1. По условию задачи вершина С треугольника принадлежит горизонтальной плоскости проекций П1. Тогда горизонтальный след плоскости  проводят через точки n1 и C1. Соединив эти две точки и продлив отрезок до пересечения с осью х, находят точку схода следов . Учитывая свойство, что все фронтали плоскости параллельны ее фронтальному следу, фронтальный след 2 плоскости  проводят через точку  параллельно фронтали .

Для нахождения натуральной величины треугольника ABC необходимо построить совмещенное положение плоскости  с горизонтальной плоскостью проекций П1. Для этого через вершину А проводят горизонталь h1. На фронтальном следе 2 фиксируют точку 22. Ее горизонтальная проекция - точка 21. Точка 2 вращается в плоскости, перпендикулярной к горизонтальному следу плоскости . Поэтому, чтобы построить точку 2 в совмещенном положении 20, проводят из 21 перпендикуляр к горизонтальному следу , а из центра  дугу окружности радиусом   до пересечения с направлением перпендикуляра. Соединив  с 20, получают совмещенное положение фронтального следа - Далее через точку 2о проводят горизонталь ha в совмещенном положении. На этой горизонтали находят точку А0, проведя перпендикуляр из точки a1 к горизонтальному следу .

По такой же схеме строят совмещенное положение точки В0. Совмещенное положение точки С совпадает с ее горизонтальной проекцией С1 т.е. . Соединив построенные точки, получают треугольник А0В0С0 - это и есть натуральная величина треугольника ABC.

МНОГОГРАННИКИ. СЕЧЕНИЕ МНОГОГРАННИКОВ ПЛОСКОСТЬЮ. РАЗВЕРТКИ МНОГОГРАННИКОВ

Сечение многогранников плоскостью

Многогранник есть геометрическое тело, ограниченное плоскими многоугольниками (гранями), пересекающимися по прямым линиям (рёбрам). Фигура сечения многогранника есть плоский многоугольник, сторонами которого являются прямые пересечения заданной плоскости с плоскостями граней, а вершинами -— точки пересечения рёбер многогранника с заданной плоскостью.

Построение фигуры сечения многогранника плоскостью может выполняться двумя способами:

- путем определения линии пересечения заданной плоскости с каждой из плоскостей (граней), ограничивающих геометрическое тело многогранника (эти линии — стороны фигуры сечения);

- путем нахождения точек пересечения всех ребер с заданной плоскостью (эти точки — вершины фигуры сечения).

Первый способ называется способом граней, второй — способом ребер. Выбор способа построения фигуры сечения зависит от положения секущей плоскости, рёбер и граней многогранника относительно плоскостей проекций.

Способ граней

Суть способа сводится к последовательному определению линий пересечения двух плоскостей, одна из которых является заданной, а другая - какой-либо гранью многогранника (см. разд. 6). Для построения же самой фигуры сечения определяют точки пресечения найденных прямых, которые являются вершинами многоугольника сечения.

Способ ребер

Этот способ заключается в определении точек встречи прямых (ребер) с заданной плоскостью (см. разд. 7). Установив последовательно для всех ребер точки встречи их с секущей плоскостью, соединяют эти точки отрезками прямых и получают многоугольник сечения.

Развертки многогранников

В инженерном деле многогранники чаще всего реализуются как оболочка заданных форм и размеров. Для их изготовления необходимо уметь выполнить развертку (выкройку) такой оболочки.

Развёртка многогранника представляет собой плоскую фигуру, полученную последовательным совмещением всех граней многогранника с плоскостью чертежа таким образом, чтобы грани примыкали друг к другу по линиям сгиба (рёбрам).

Для построения развёртки многогранника необходимо иметь натуральные величины всех его граней, поэтому задача построения развертки многогранника решается в два этапа:

определяют натуральную величину каждой грани (см. разд. 9);

потом путем вращения вокруг соответствующей линии (ребра) (см. разд. 9) совмещают грани с плоскостью чертежа.

Вопросы для самопроверки

Чем задаётся призматическая поверхность?

Какие признаки позволяют установить, что на данном чертеже изображена призма?

Чем задаётся поверхность пирамиды?

Какая фигура образуется в результате сечения призмы плоскостью, параллельной её боковым рёбрам?

Какая фигура образуется в результате сечения пирамиды плоскостью, проходящей через её вершину?

В чём заключается решение задач по определению сечения поверхности плоскостью с помощью способа граней и способа рёбер? 

Что называется развёрткой поверхности?

8. Способы построения развёрток многогранников, содержание каждого из них.

9. В каких случаях для построения развёртки используются способы: нормального сечения, раскатки, треугольников


Чертежи деталей, получаемых из сортового материала механической обработкой