Сопротивление материалов Запас усталостной прочности

Инженерная графика
Выполнение расчетно-графической работы
Сопротивление материалов
Машиностроительное черчение
Выполнение сборочного чертежа
Сечения и разрезы
Начертательная геометрия
Инженерная графика
Правила классификации видов изделий
ДИЗАЙН
Чтение и деталирование сборочного чертежа
Электротехника
Лабораторная работа по электронике
Математика
Предел последовательности
Декартова система координат
Четность функций
Монотонность функций
Преобразование графиков функций
Квадратный трехчлен
Обратные тригонометрические функции
Графические методы решения задач
Система уравнений с двумя
переменными.
Параллельные прямые
Теорема синусов
Построения на изображениях
Конические сечения
Поверхности второго порядка
Матрицы
Ранг матрицы
Элементы векторной алгебры и
аналитической геометрии
Формулы Крамера
Тройные и двойные интегралы
при решении задач
Вычисление объемов с помощью
тройных интегралов
Метод замены переменной
Замена переменных в двойных интегралах
Замена переменных в тройных интегралах
Определенный интеграл
Площадь криволинейной трапеции
Замена переменной в определенном
интеграле
Определение двойного интеграла
Свойства двойного интеграла
Определение тройного интеграла
Производная сложной функции
Двойные интегралы в полярных
координатах
Двойные интегралы в
произвольной области
Двойные интегралы в
прямоугольной области
Геометрические приложения
двойных интегралов
Геометрические приложения
криволинейных интегралов
Геометрические приложения
поверхностных интегралов
Несобственные интегралы
Интегральный признак Коши
Интегрирование по частям
Кинематика движение тела
 

Запас усталостной прочности и его определение Сначала построим диаграмму усталостной прочности (часто, для простоты рассуждений предельную линию представляют в виде прямой) и покажем на ней рабочую точкуМ цикла (с координатами sm и sа) в случае, если рассматриваемый элемент испытывает только простое растяжение и сжатие (рис. 9.7).

Аналогичным образом могут быть получены соотношения усталостной прочности и при чистом сдвиге. Эксперименты показывают, что диаграмма усталостной прочности для сдвига заметно отличается от прямой линии, свойственной простому растяжению-сжатию, и имеет вид кривой.

Для цилиндрической клапанной пружины (рис.9.9) двигателя внутреннего сгорания определить коэффициент запаса прочности аналитически и проверить его графически по диаграмме предельных амплитуд, построенной строго в масштабе.

Определение коэффициента запаса прочности. Деталь (пружина) может перейти в предельное состояние по усталости и по причине развития пластических деформаций. Коэффициент запаса прочности по усталости определяются по формулам (9.10): ,

Основы теории упругости и пластичности Напряженное состояние в точке.Уравнения равновесия.

Определение напряжений на произвольной площадке. Главные оси и главные напряжения. Сопративление материалов Задания и решения Пластины и оболочки Теория тонких пластин.

Такие оси называются главными осями. Соответствующие им взаимно перпендикулярные площадки называются главными площадками, а нормальные напряжения на них-главными напряжениями.

Рассмотрим как определяются величины главных напряжений через заданные значения шести компонентов напряжений sx, sy, sz, txy, txz, tyz в произвольной системе координат x, y, z. Возвращаясь к рис.10.2, предполагаем, что наклонная площадка является главной. Общие принципы расчета конструкции В результате расчета нужно получить ответ на вопрос, удовлетворяет или нет конструкция тем требованиям прочности и жесткости, которые к ней предъявляются.

Для определения положения главных площадок необходимо вычислить значения направляющих косинусов следующим образом.

Геометрические уравнения и уравнения неразрывности Происходящие при нагружении тела перемещения его точек можно задать при помощи совокупности трех функций (см. п.1.5): u(x,y,z), v(x,y,z) и w(x,y,z), определяющих перемещения вдоль координатных осей x, y и z, соответственно.

Физические уравнения теории упругости дляизотропного тела. Обобщенный закон Гука. Инженерная графика выполнение сборочного чертежа расчетно-графическое задание

Возможные способы решения задач теории упругости В общем случае искомыми величинами в задачах теории упругости являются функции перемещений, компоненты напряженного и деформированного состояний среды.

Теория предельных напряженных состояний При действии внешних сил материал конструкции может находиться в различных механических состояниях.

Плоская задача в декартовых координатах На практике различают два вида плоской задачи-плоскую деформацию и обобщенное плоское напряженное состояние.

Вычисление величин главных напряжений. Для решения приведенного уравнения применим формулу Кардано:

,

Проверка правильности вычисления главных напряжений: так как I1, I2 и I3-инварианты, значит их значения постоянны.

Дана прямоугольная невесомая пластина (рис.10.6), по кромкам которой действуют внешние силы, равномерно распределенные по ее толщине, равной единице/

Выяснить характер распределенных по кромкам пластины внешних сил, под действием которых имеет место данная система напряжений, и построить эпюры напряжений.

По полученным эпюрам напряжений, принимая их за эпюры распределенной внешней нагрузки, произвести проверку равновесия пластины. Выполним проверку равновесия пластины. Для этой цели найдем равнодействующие внешних сил, действующих по кромкам пластины (рис.10.8):

Основы теории пластичности При испытании образцов обнаруживаются следующие основные особенности характера деформирования материалов при их нагружении.

Процесс деформирования материалов можно условно разделить на две стадии.

При деформировании материалов пластические деформации, как правило, существенно больше упругих и, учитывая, что объемная деформация нe является величиной порядка упругих удлинений, поэтому принимается, что при пластическом деформи-ровании изменение объема пренебрежительно мало.

Для трехстержневой системы (рис.10.10,а) при условии, что диаграмма растяжения для стержней имеет участок упрочнения (рис.10.10,б), при следующих исходных данных: a=30°; l=1,0м; F=210-4м2-площади поперечных сечений стержней; E=2108 кН/м2-модуль упругости материалов стержней; sT= =2,5105 кН/м2-предел упругости материала; sB=3,9105 кН/м2 - временное сопротивление; eB=0,02 -значение деформации, соответствующее напряжению sB, требуется:1.Определить абсолютные и относительные удлинения стержней и значение силы P=P1, при котором в наиболее напряженном стержне напряжения достигают предела упругости;

Определить абсолютные и относительные удлинения стержней и значение силы P=P2, при котором все элементы заданной системы переходят в пластическую стадию деформирования.

Как показали расчеты, учет пластической стадии работы позволил выявить дополнительные резервы несущей способности заданной системы, т.к. величина разрушающей силы заданной системы в действительности равна P=P3=200,97 кН.

Исключая средний стержень, система превращается из статически неопределимой в статически определимую.

Пластины и оболочки Теория тонких пластин.

Отрезок нормали к срединной поверхности при изгибе остается прямым и перпендикулярным к срединной поверхности. Это допущение носит название гипотезы прямых нормалей.

  В рассмотрим эллиптическую пластинку, жестко заделанную по контуру и нагруженную равномерно распределенной нагрузкой интенсивностью q (рис.11.4). При a=1,3м, b=1,0м, h=0,18м, q=300кН/м2, g=1/6, Е=2108кН/м2, требуется: 1.Определить прогиб пластины в ее середине;

Проверим, удовлетворяет ли выбранная функция w основному дифференциальному уравнению (11.9). Вычислим частные производные .

Для построения эпюр Mx и My достаточно найти их значения в трех точках по осям эллипса, так как вдоль них эти функции имеют параболический характер изменения, для этого воспользуемся формулами (11.15) ¸ (11.17):

Прочность толстостенной цилиндрической оболочки при действии внутреннего и внешнего давлений.

Для изучения напряженного состояния выделим из цилиндра элемент в форме криволинейного шестигранника (рис.11.8).

Рассмотрим случай нагружения цилиндра только внутренним давлением, тогда принимая pв=0, из (11.21) и (11.27) получим:;

 Для толстостенной стальной трубы, имеющей внутренний диаметр d=0,03м и наружный диаметр D=0,18м, и изготовленной из пластичного материала с sT=250МПа и с коэффициентом Пуассона m=0,5, требуется: 1.Определить давление pT, при котором в материале трубы начнется пластическое деформирование;

Геометрические приложения двойных интегралов