Сопротивление материалов практикум по решению задач

Инженерная графика
Выполнение расчетно-графической работы
Сопротивление материалов
Машиностроительное черчение
Выполнение сборочного чертежа
Сечения и разрезы
Начертательная геометрия
Инженерная графика
Правила классификации видов изделий
ДИЗАЙН
Чтение и деталирование сборочного чертежа
Электротехника
Лабораторная работа по электронике
Математика
Предел последовательности
Декартова система координат
Четность функций
Монотонность функций
Преобразование графиков функций
Квадратный трехчлен
Обратные тригонометрические функции
Графические методы решения задач
Система уравнений с двумя
переменными.
Параллельные прямые
Теорема синусов
Построения на изображениях
Конические сечения
Поверхности второго порядка
Матрицы
Ранг матрицы
Элементы векторной алгебры и
аналитической геометрии
Формулы Крамера
Тройные и двойные интегралы
при решении задач
Вычисление объемов с помощью
тройных интегралов
Метод замены переменной
Замена переменных в двойных интегралах
Замена переменных в тройных интегралах
Определенный интеграл
Площадь криволинейной трапеции
Замена переменной в определенном
интеграле
Определение двойного интеграла
Свойства двойного интеграла
Определение тройного интеграла
Производная сложной функции
Двойные интегралы в полярных
координатах
Двойные интегралы в
произвольной области
Двойные интегралы в
прямоугольной области
Геометрические приложения
двойных интегралов
Геометрические приложения
криволинейных интегралов
Геометрические приложения
поверхностных интегралов
Несобственные интегралы
Интегральный признак Коши
Интегрирование по частям
Кинематика движение тела
 

Сопротивление материалов - наука о прочности, жесткости и устойчивости элементов инженерных конструкций.

Внешние и внутренние силы. Метод сечений.

Внутренние усилия должны быть так распределены по сечению, чтобы деформированные поверхности сечения А при совмещении правой и левой частей тела в точности совпадали.

В заключение заметим, что при выполнении практических расчетов, для наглядности, как правило, определяются графики функций внутренних силовых факторов относительно координатной оси, направленной вдоль продольной оси стержня.

Перемещения и деформации Под действием внешних сил твердые тела изменяют свою геометрическую форму, а точки тела неодинаково перемещаются в пространстве. Вектор , имеющий свое начало в точке А недеформированного состояния, а конец в т.  деформированного состояния, называется вектором полного перемещения т.А (рис.1.5,а).

Закон Гука и принцип независимости действия сил Многочисленные экспериментальные наблюдения за поведением деформируемых тел показывают, что в определенных диапазонах перемещения точек тела пропорциональны действующим на него нагрузкам.

Внутренние силы и напряжения Под растяжением (сжатием) понимают такой вид нагружения, при котором в поперечных сечениях стержня возникают только нормальные силы, а прочие силовые факторы равны нулю.

Удлинение стержня и закон Гука Рассмотрим однородный стержень с одним концом, жестко заделанным, и другим-свободным, к которому приложена центральная продольная сила Р (рис.2.2). Процесс деформирования материалов можно условно разделить на две стадии.

  Для стального бруса квадратного сечения сжатого силой Р с учетом собственного веса при исходных данных приведенных ниже, требуется (рис.2.3,а): 1.Определить количество расчетных участков;

Аналогично предыдущему проводим сечение 2-2 на расстоянии z2 (рис.2.3,в). Для верхней части составляем уравнение равновесия åz=0.

Потенциальная энергия деформации Внешние силы, приложенные к упругому телу и вызывающие изменение геометрии тела, совершают работу А на соответствующих перемещениях.

Статически определимые и статически неопределимые системы Если при рассмотрении заданной системы, находящейся в равновесном состоянии от действия заданных внешних нагрузок, все реакции в связях закрепления, а также внутренние усилия в ее элементах, можно определить только по методу сечений, без использования дополнительных условий, то такая система называется статически определимой. Внешние и внутренние силы Метод сечений Сопративление материалов Задания и решения

Теперь перейдем к анализу деформаций в растянутом стержне. Наблюдения показывают, что его удлинение в продольном направлении сопровождается пропорциональным уменьшением поперечных размеров стержня (рис.2.7).

Основные механические характеристики материалов Для количественной оценки основных свойств материалов, как правило, экспериментально определяют диаграмму растяжения в координатах s и e (рис.2.9),

Общие принципы расчета конструкции В результате расчета нужно получить ответ на вопрос, удовлетворяет или нет конструкция тем требованиям прочности и жесткости, которые к ней предъявляются.

Пример расчета (задача № 2) Абсолютно жесткий брус АЕ (рис.2.12,а), имеющий одну шарнирно неподвижную опору С и прикрепленный в точках В, Д и Е тремя тягами из упруго-пластического материала, нагружен переменной по величине силой Р.

Для составления дополнительных уравнений рассмотрим деформированное состояние системы (рис.2.12,в), имея в виду, что брус абсолютно жесткий и поэтому после деформации тяг останется прямолинейным.

Определить в процессе увеличения нагрузки Р такую ее величину, при которой напряжение в одной из тяг достигнет предела текучести.

Найти несущую способность из расчетов по методам допускаемых напряжений и разрушающих нагрузок при одном и том же коэффициенте запаса прочности.

При выполнении практических расчетов важно знать, как меняются статические моменты сечения при параллельном переносе координатных осей (рис3.2).

Моменты инерции сечения.

Определим осевые моменты инерции прямоугольника относительно осей x и y, проходящих через его центр тяжести (рис.3.4).

Главные оси и главные моменты инерции Рассмотрим, как изменяются моменты инерции плоского сечения при повороте осей координат из положения x и y к положению u и v. Из рис.3.5,б легко установить, что u=ysina+xcosa;v=ycosa-xsina. (3.10).

 Для сечения, составленного из швеллера №20а, равнобокого уголка (80;80;8)10-9м3 и полосы (180;10)10-6м2 (рис.3.6) требуется:1.Найти общую площадь сечения; 2.Определить центр тяжести составного сечения;

Определить центр тяжести составного сечения. В качестве вспомогательных осей для определения положения центра тяжести примем горизонтальную и вертикальную оси xшв и yшв, проходящие через центр тяжести швеллера.

Найти положение главных центральных осей инерции. Угол наклона главных осей инерции, проходящих через центр тяжести составного сечения, к центральным осям инерции xC и yC определим по формуле: .

Кручение бруса с круглым поперечным сечением Здесь под кручением понимается такой вид нагружения, при котором в поперечных сечениях бруса возникает только крутящий момент.

Парные им напряжения возникают в продольных плоскостях в осевых сечениях. Величину крутящего момента Mz можно определить через t с помощью следующих рассуждений.

  Стальной валик переменного сечения, испытывающего кручение, закручивается крутящими моментами, действующими в двух крайних и двух пролетных сечениях.

Сначала определим моменты сопротивления сечения валика для каждого участка. I участок (трубчатое сечение) согласно (4.13):где ;

Построить эпюры касательных напряжений по сечениям вала, отметив на сечениях опасные точки. Касательные напряжения в точках поперечного сечения валика определяются по формулам:

Построить эпюру углов закручивания. Угол закручивания на i-ом участке вала в соответствии с (4.10) определяется:,

где-угол закручивания на правом конце (i-1)-го участка (для первого участка -начальный угол закручивания вала); li - координата начала i-го участка. Выполнение расчетно-графической работы Выполнение сборочного чертежа Инженерная графика

Кручение тонкостенного бруса В машиностроении, авиастроении и вообще в технике широко применяются тонкостенные стержни с замкнутыми (рис.4.7,а) и открытыми профилями (рис.4.7,б) поперечных сечений.

Далее рассмотрим брус, имеющий поперечное сечение в форме замкнутого тонкостенного профиля (рис.4.9).

Пример расчета (задача 5) Пусть задан тонкостенный стержень (рис.4.10,а) при действии самоуравновешивающих крутящих моментов на двух противоположных концах, требуется: 1.Определить выражения максимальных напряжений и углов закручивания в случаях, когда стержень имеет открытый (рис.4.10,б) и замкнутый (рис.4.10,в) профиль;

Геометрические приложения двойных интегралов