Стандартная ортогональная аксометрия

Основные законы начертательной геометрии

Чтение сборочного чертежа это процесс определения конструкции, размеров и принципа работы изделия по его чертежу.

Пример 2 (Рис.70). Решить предыдущую задачу способом замены плоскостей проекций. Дополнительно спроецировать перпендикуляр на исходные плоскости проекций: и .

Чтобы определить длину перпендикуляра , необходимо спроецировать его в натуральную величину. А это станет возможным, если отрезок преобразовать в проецирующую прямую и использовать его вырожденную в точку проекцию. Для решения задачи потребуется две замены плоскостей проекций.

Решение:

1-я замена:

1.

2.   и ,

 AB(A1B1, A4B4) – линия уровня.

2-я замена:

3. (П5 П4) AB Х45 A4B4,

4. A5 = B5 и M5,

 AB(A4B4, A5=B5) – проецирующая

 прямая.

5. |M5, (A5=B5)|=|M,AB| - ответ.

Дополнительно: при обратном проецировании перпендикуляра на плоскости   и учесть, что в системе плоскость   перпендикуляр  – линия уровня.

Пример 3 (Рис.71). Определить угол наклона отрезка  к плоскости  способом замены плоскостей проекций.

На чертеже угол между прямой и плоскостью определяется углом между вырожденной проекцией плоскости и натуральной величиной отрезка на прямой. Для получения вырожденной проекции плоскости требуется две замены плоскостей проекций. При второй замене необходимо учитывать, что отрезок в последней системе плоскостей проекций должен оказаться линией уровня.

Решение:

 1-я замена:

1.

2. и ,

  – плоскость уровня.

 2-я замена:

3.   ,

4. и ,

– проецирующая прямая,

– прямая уровня.

5. .

6. Обводка с учётом видимости.

Деление окружности на пять равных частей

(Построение правильного пятиугольника, вписанного в окружность)

Построения показаны на рисунке 2.4.

Из точки С – середины радиуса окружности, как из центра, дугой радиуса СD сделать засечку на диаметре, получим точку М. Отрезок DМ равен длине стороны вписанного правильного пятиугольника. Сделав радиусом DМ засечки на окружности, получим точки деления окружности на пять равных частей (вершины вписанного правильного пятиугольника).

Деление окружности на шесть равных частей (Построение правильного шестиугольника, вписанного в окружность)

Построения показаны на рисунке 2.5.

Сторона правильного шестиугольника, вписанного в окружность, равна радиусу окружности.

Для деления окружности на шесть равных частей надо из точек 1 и 4 пересечения центровой линии с окружностью сделать на окружности по две засечки радиусом R, равным радиусу окружности. Соединив полученные точки отрезками прямых, получим правильный шестиугольник.

 Рис.2.5 Рис.2.6

Сборочный чертеж. Ознакомление со сборочной единицей. Паспорт сборочной единицы (схема сборки, пояснительная записка к сборочному чертежу), спецификация. Нанесение позиций. Основная надпись чертежа сборочной единицы, простановка размеров. Условности и упрощения, применяемые при вычерчивании сборочного чертежа. Применение графического редактора при выполнении 3D-чертежей и 3D-сборок
Курс лекций по начертательной геометрии