Термодинамические параметры Кристаллическое состояние

Лекции по физике. Механика, динамика, колебания Молекулярная физика и термодинамика

Диффузия в газах

Предположим, что в единице объёма двухкомпонентной газовой смеси содержится n1 молекул одного вида и n2 молекул другого вида. Полное число молекул в единице объёма равно n = n1 + n2­. Допустим, что в направлении оси х создаются градиенты концентраций , причём . Тогда, , так что n, а, следовательно, и Р постоянны (в силу Р = nkT).

В этом случае газодинамических потоков не возникает. Однако вследствие теплового движения молекул будет происходить процесс выравнивания концентраций, сопровождающийся переносом массы каждой из компонент в направлении убывания её концентрации. Этот процесс носит название диффузии. Диффузия наблюдается так же в жидких и твёрдых телах.

Поток молекул i – го вида через перпендикулярную к оси х поверхность S определяется выражением

,

где D – коэффициент пропорциональности, называемый коэффициентом диффузии. Знак минус указывает на то, что поток молекул направлен в сторону убывания концентрации. Умножив обе части этого равенства на массу молекулы i – го вида mi, получим выражение для потока массы i – ой компоненты:

,

где ri = nimi – парциальная плотность i – ой компоненты. Собственные значения и собственные функции операторов. Задача на собственные значения операторов Поставим задачу: найти такие состояния микросистемы, в которых физическая величина имеет строго определённые значения.

Эти формулы представляют собой эмпирические уравнения диффузии. Их называют уравнением Фика.

Получим уравнение диффузии, основываясь на молекулярно-кинетических представлениях, причём для упрощения расчётов будем считать, что молекулы обеих компонент мало отличаются друг от друга по массе (m1 » m2 » m) и имеют практически одинаковые эффективные диаметры (d1 » d2 » d). В этом случае молекулам обеих компонент можно приписывать одинаковую среднюю скорость теплового движения <u >, а среднюю длину свободного пробега вычислить по формуле , где n = n1 + n2.

Пусть изменение концентрации первой компоненты вдоль оси х даётся функцией n1 = n1(x).

Поток молекул первой компоненты летящих через поверхность S в положительном направлении оси х, равен

,

а соответствующий поток молекул первой компоненты, летящих в отрицательном направлении оси х равен разности этих потоков

.

Таким образом, мы пришли к уравнению диффузии Фика, причём получили для коэффициента диффузии выражение

.

Вязкость газов Сила трения между двумя слоями жидкости может быть вычислена по формуле ,

Основы термодинамики В основе термодинамики лежат три фундаментальных закона, называемых началами термодинамики.

Применим первое начало термодинамики к изопроцессам в газе. Изопроцесс - это процесс, происходящий в газе, когда один из параметров, описывающих газ, является постоянным.

Соотношение Майера Сначала рассмотрим закон, описывающий этот процесс и его график в координатах (P,V).

Продолжим рассмотрение изобарического процесса. Подставляя полученные выражения для dQ, dU, dA в первое начало термодинамики, получим:

Первое начало термодинамики при изотермическом процессе Тогда dQ = dA - При изотермическом процессе вся теплота, сообщенная газу, идет на работу, совершаемую газом: Q = A.

Термодинамика адиабатического процесса: dQ=0 Несмотря на то, что мы поочерёдно рассмотрели процессы с V=const, P=const, T=const, список характерных газовых процессов этим не исчерпывается.

Воспользовавшись уравнением Менделеева-Клапейрона PV = nRT, можно перейти к переменным (P,V) и (T,P).

Теплоемкость идеального газа Остановимся подробнее на теплоемкости идеального газа.

Цикл Карно и его КПД Французский инженер Сади Карно предложил идеальный цикл, который даёт максимальное КПД т.е. .

Вернёмся к соотношению (2), которое имеет место в случае обратимого цикла Карно. В общем случае при возможности необратимого цикла Карно это соотношение примет вид:

.  (3).

Приведём формулы для подсчёта изменения энтропии в случае изопроцессов для идеального газа: а) Изохорический процесс: .

Понятие энтропии имеет статистическое толкование. Состояние макроскопического тела (т.е. тела, образованного огромным количеством молекул) может быть задано с помощью объёма, давления, температуры, внутренней энергии и других макроскопических величин.

Нужно уметь представить гармонические колебания в виде вектора и пользоваться графическим методом сложения колебаний, т.е. строить векторную диаграмму Важно представлять себе, что периодические процессы иной формы, чем гармонические, могут быть представлены в виде суперпозиции одновременно совершающихся гармонических колебаний с различными частотами, амплитудами и начальными фазами.
Диффузия в газах