Геометрические приложения двойных интегралов Особенности ядерных реакторов http://siclas.ru/
Вознамерились разлучиться с импотенцией, подайтесь к первоклассным работницам. Дешевые проститутки станут лучшим решением. Обслуживание по самым акционным ценам, но качество любви у барышень отменное. | Вожделеете произвольных поцелуев, нанимайте дам с затейливой конституцией. Элитные индивидуалки станут хорошим решением. Похотливость, французская любовь и любые услуги по заказу клиента - единое правило этих куколок. Математика Предел последовательности

Урок основ математики школьнику и студенту

Обратные тригонометрические функции

График 2.3.4.1. График 2.3.4.2. Арксинусом x называют такое число , что sin  t  =  x . Из определения следует, что

При помощи арксинуса решение уравнения sin  x  =  t записывается следующим образом: или t  = (–1) n  arcsin  x  + π n

Функция y  = arcsin  x определена и непрерывна на отрезке [–1; 1]. Ее областью значений является отрезок Она обратна функции y  = sin  x , рассматриваемой на отрезке и поэтому монотонно возрастает. Функция y  = arcsin  x является нечетной.

Арккосинусом x называют такое число 0 ≤  t  ≤ π, что cos  t  =  x . Из определения следует, что

При помощи арккосинуса решение уравнения cos  x  =  t записывается следующим образом: t  = ±arccos  x  + 2π n

Функция y  = arccos  x определена и непрерывна на отрезке [–1; 1]. Ее областью значений является отрезок [0; π]. Она обратна функции y  = cos  x , рассматриваемой на отрезке [0; π], и поэтому монотонно убывает на области определения. Функция y  = arccos  x не является ни четной, ни нечетной.

Арктангенсом x называют такое число , что tg  t  =  x . При помощи арктангенса решение уравнения tg  x  =  t записывается следующим образом: t  = arctg  x  + π n Функция y  = arctg  x является нечетной.

График 2.3.4.3. График 2.3.4.4.

Арккотангенсом x называют такое число 0 ≤  t  ≤ π, что ctg  t  =  x . При помощи арккотангенса решение уравнения ctg  x  =  t записывается следующим образом: t  = arcctg  x  + π n Функция y  = arcctg  x не является ни четной, ни нечетной. Вознамерились разлучиться с импотенцией, подайтесь к первоклассным работницам. Дешевые проститутки станут лучшим решением. Обслуживание по самым акционным ценам, но качество любви у барышень отменное. | Вожделеете произвольных поцелуев, нанимайте дам с затейливой конституцией. Элитные индивидуалки станут хорошим решением. Похотливость, французская любовь и любые услуги по заказу клиента - единое правило этих куколок.

Функции y  = arctg  x и y  = arcctg  x определены и непрерывны на всей числовой оси. Их областями значений являются, соответственно, интервалы и (0; π). Арктангенс монотонно возрастает, а арккотангенс монотонно убывает на всей области определения. Функциями, обратными к данным, являются соответственно tg  x на и ctg  x на (0; π).

Модель 2.13. Простейшие тригонометрические уравнения.

Из определения обратных тригонометрических функций следуют некоторые тождества.

 

 

 

 

 

 

 

Степенная функция с натуральным показателем непрерывна на множестве действительных чисел. Если n нечетное, то эта функция строго возрастает и потому обратима. Обратной к ней является функция Степенная функция с четным показателем необратима

В природе и жизни человека встречается большое количество процессов, в которых некоторые величины изменяются так, что их отношение данной величины через равные промежутки времени не зависит от времени. Среди таковых можно назвать радиоактивный распад веществ, рост суммы на счету в банке и др. Все эти процессы описываются показательной функцией.

На промежутке (0; +∞) определена функция, обратная к a x ( a  > 0, a  ≠ 1). Эта функция называется логарифмической : y  = log a   x

Функция называется гиперболическим синусом . Функция называется гиперболическим косинусом .

Подобно тому, как тригонометрические синус и косинус являются координатами точки на координатной окружности, гиперболические синус и косинус являются координатами точки на гиперболе.

 

 Погрешностью приближённого числа  называется разность  между ним и точным значением . Так как точное значение неизвестно, то и погрешность обычно неизвестна и можно найти только оценку погрешности. Обозначим оценку погрешности приближённого числа  символом , тогда  определяется из неравенства

   .

 Число  называется абсолютной погрешностью приближённого числа . Обычно выбирается возможно меньшее значение . Абсолютные погрешности записывают не более чем с двумя – тремя значащими цифрами и в приближённом числе  не следует сохранять те разряды, которые округляются в его абсолютной погрешности. Округляются абсолютные погрешности по своим правилам: только в большую сторону.

 Количество верных значащих цифр числа отсчитывается от первой значащей цифры до первой значащей цифры его абсолютной погрешности; остальные цифры числа называют сомнительными. В окончательных результатах вычислений обычно оставляют верные цифры и одну сомнительную.


Преобразование графиков функций