Маховики механических кранов Обозначение материалов Амплитудные и фазовые соотношения между колебаниями
Графические методы решения задач

Урок основ математики школьнику и студенту

Формулы Крамера

Метод Крамера состоит в том, что мы последовательно находим главный определитель системы (5.3), т.е. определитель матрицы А

D = det (a i j )

и n вспомогательных определителей D i (i= ), которые получаются из определителя D заменой i-го столбца столбцом свободных членов.

Формулы Крамера имеют вид:

D × x i = D i ( i = ). (5.4)

Из (5.4) следует правило Крамера, которое дает исчерпывающий ответ на вопрос о совместности системы (5.3): если главный определитель системы отличен от нуля, то система имеет единственное решение, определяемое по формулам:

x i = D i / D .

Если главный определитель системы D и все вспомогательные определители D i = 0 (i= ), то система имеет бесчисленное множество решений. Если главный определитель системы D = 0, а хотя бы один вспомогательный определитель отличен от нуля, то система несовместна.

Пример 2.14 . Решить методом Крамера систему уравнений:

x 1 + x 2 + x 3 + x 4 = 5,

x 1 + 2x 2 - x 3 + 4x 4 = -2,

2x 1 - 3x 2 - x 3 - 5x 4 = -2,

3x 1 + x 2 +2x 3 + 11 x 4 = 0. Матрицы и определители

Решение. Главный определитель этой системы

значит, система имеет единственное решение. Вычислим вспомогательные определители D i ( i = ), получающиеся из определителя D путем замены в нем столбца, состоящего из коэффициентов при x i, столбцом из свободных членов:

Отсюда x 1 = D 1 / D = 1, x 2 = D 2 / D = 2, x 3 = D 3 / D = 3, x 4 = D 4 / D = -1, решение системы - вектор С=(1, 2, 3, -1) T.

Показательная функция Упростите выражение Обратные тригонометрические функции

Рассмотрим функцию f  ( x ) = tg  x для Пример Докажите тождество Уравнения, содержащие модуль

 

Однако задачи, подлежащие решению, формулируются обычно на математическом языке (языке уравнений, функций, производных, интегралов и т. п.). Поэтому разработка численного метода необходимо предполагает замену исходной задачи другой, близкой к ней, и сформулированной в терминах чисел и арифметических операций. Несмотря на всё разнообразие способов такой замены, некоторые общие свойства присущи всем вычислительным алгоритмам. Эти свойства демонстрирует следующий простейший пример.
Поверхности второго порядка